%% WADCP PACKAGE 0.3 -- function [zeta_vdB,zeta_ddB,Cst_sdt]=sdt_absorption %% % % Backscatter signal processing toolbox % % _Written by C. Tessier, IFREMER |contact : caroline.tessier@ifremer.fr function [zeta_vdB,zeta_ddB,Cst_sdt]=sdt_absorption_Thorne(f,a_s) % global f %% % * sediment and water properties to evaluate sigbar and sigbartot * % a_s=40; % default particules diameter [µm] rho_s=2650; % default individual particles density [kg/m^3] c_s=4500; % default sound celerity in particles [m/s] rho0=1025; % default water density [kg/m^3] c0=1505; % default sound celerity in water [m/s] % prompt = {'a_s : particules mean/equivalent diameter [µm]';'rho_s : particles density [kg/m^3]';'c_s : sound celerity in particles';'rho0 : water density [kg/m^3]';'c0 : sound celerity in water [m/s]'}; % dlg_title = 'Summary of particles and water characteristics - can be changed by users'; % num_lines = 1; % def = {num2str(a_s);num2str(rho_s);num2str(c_s);num2str(rho0);num2str(c0) }; % tmp = inputdlg(prompt,dlg_title,num_lines,def); % a_s=eval(char(tmp{1})); % rho_s=eval(char(tmp{2})); % c_s=eval(char(tmp(3))); % rho0=eval(char(tmp{4})); % c0=eval(char(tmp{5})); %----------------------------------- a_s=a_s/2*10^-6; %radius en meters needed !! v_s=4/3*pi*(a_s).^3; %individual volume en m^3 %----------------------------------- % ask user to choose nature of particles (2 default case and one user defined) % qst_proc=questdlg('Which kind of particles ?','Particles Caracteristics','Mineral','Zooplankton','User defined','Mineral'); % switch qst_proc % case 'Mineral' % id_sed=1; % case 'Zooplankton' % id_sed=2; % case 'User defined' % id_sed=3; % end % % % ask user to choose theorical model (1) Thorne or (2) Tessier (from Stanton) % qst_proc=questdlg('Which Acoustic Scattering Model ?','Acoustic Scattering Model',... % 'Tessier 2006 (all particles)','Thorne 2002 (sand)','Tessier 2006 (all particles'); % switch qst_proc % case 'Thorne 2002 (sand)' % id_mod=1; % case 'Tessier 2006 (all particles)' % id_mod=2; % end % % if ((id_mod==1) & (id_sed~=1)) % display('!!! WARNING !!! ') % display('Acoustic Scattering Model of Thorne valid for MINERAL particles only') % end % evaluation of scattering cross-sections [sigbar,sigbartot]=sigmabar(f,a_s,rho_s,c_s,1); % sediment caracterisation in the Scatter Index IV : IV=10log10(M*sigbar/rho_s/vs) Cst_sdt=10*log10(sigbar/rho_s/v_s); %% % * sediment absorption constantes * %-absorption visqueuse particules zeta_v [Urick,1948] lambda=1500/f/1000; % mean wave length omega=2*pi*f*1000; %vitesse angulaire (rad/s) nu=1.3*10^-6;%viscosite cinematique eau nu (m^2/s) beta=(omega/2/nu)^0.5; teta=0.5*(1+9./(2*beta.*a_s)); s=(9./(4*beta.*a_s)).*(1+1./(beta.*a_s)); gg=rho_s/rho0; c0=1500; zeta_v=(2*pi/lambda*(gg-1)^2)/(2*rho_s)*(s/(s.^2+(gg+teta).^2)); zeta_vdB=20*log10(exp(1))*zeta_v; %-absorption due a diffusion par particules zeta_d zeta_ddB=20/2*log10(exp(1))*(sigbartot/rho_s/v_s); %-amortissement total du au sediment alpha_s %qs=2*(zeta_vdB+zeta_ddB)*M*dR;