%function sigmabar.m %Compute the individual effective mean Backscattering Cross Section % and the global Scattering Cross Section (for the scattering on a particle integrated in all directions) % !!! here, independent of the vertical axis and written for ONE mean size of particles a_s !!! %choicePart= 1 : mineral % 2 : organic (biological o detritical) % 3 : user defined %choiceMod= 1 : model of Thorne et al. 2002 (calibrated for sand particles) % 2 : model Tessier 2006, constructed from Stanton 1998 (fluid sphere, non rigid particles) % f [kHz] : nominal frecuency of ADCP % a_s [m] : radius of particle % rho_s [kg/m3]: density of particle % c_s [m/s] : sound velocity in particle %------------------------------------------------------------------------------ function [sigbar,sigbartot]=sigmabar(f,a_s,rho_s,c_s,choiceMod) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% c0=1505;rho0=1024; %(T=15deg,S=34psu) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k=2*pi/(c0/f/1000); ka=k.*a_s; ka2=ka.^2; ka4=ka.^4; %% % * % switch choicePart % case 1 %mineral--------------------------- % %c1=3800;%e=16.1551; % c1=4500; % rho1=2650; % % c1=1680; % % rho1=1130; % g=rho1./rho0; % h=c1/c0; % e=g*h^2; % case 2 %zooplankton, Stanton 1998)--------- % % c1= ; % rho1=rho0*1.04; % e=1.12; % g=rho1/rho0; % h=sqrt(e/g); %h=1.0377; %user defined ---------------------- c1=c_s; rho1=rho_s; g=rho1./rho0; h=c1/c0; e=g*h^2; % end A=(e-1)/(3*e)+(g-1)./(2*g+1); %A=0.57 R=(g*h-1)/(g*h+1); %R=0.73 B=((e-1)/(3*e))^2+1/3*((g-1)./(2*g+1))^2; %B=0.12 %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% switch (choiceMod) case 1 %Thorne et al., 1993, 2002 %model calibrated for sand particles Kalpha43=2*B; %(Kalpha=0.18 sables; Kalpha=0.002 zoo) Kf=2*A; %(Kf=1.14 sables ; Kf=0.0779 zoo) C0=1.1*( 1-0.25*exp(-( (ka-1.4)./0.5 ).^2) ).*( 1+0.37*exp(-( (ka-2.8)./2.2 ).^2) ); %for sand mixture %C0=1.1; %for zoo? %to compute the SCATTER INDEX : %Fm=FORM function Fm=C0.*(Kf*ka2)./(1+Kf*ka2); %L=Scatter LENGHT L=Fm.*a_s/2; %Backscattering cross section sigbar=L^2; %to compute sediment attenuation : %XHI=NORMALISED TOTAL scattering cross section XHI=(Kalpha43.*ka4)./(1+1.3*ka2+Kalpha43.*ka4); %sig=TOTAL scattering cross section sigbartot= (2*pi*a_s.^2).*XHI; case 2 %Tessier 2006, constructed from Stanton, 1998 %for non rigid (fluid) spheres (mineral o organic) xi=2*sqrt(2)*A/R; sigbar=(A^2).*(a_s.^2).*(ka4./(1+xi.*ka2+(2*(A^2)/R^2)*ka4)); %asymptotes: sigR=A^2*(a_s.^2).*ka4; %Rayleigh Backscattering sigG=R^2*(a_s.^2)/2; %Geometric Scattering xitot=2*sqrt(2*B)/R; sigbartot=4*pi*B*a_s.^2.*(ka4./(1+xitot.*ka2+(2*B/R^2)*ka4)); end